報告摘要: In this talk, we study a time-periodic nonlocal dispersal susceptible-infected-susceptible epidemic model with Neumann boundary conditions, where the total population number is constant. First, we investigate limiting profile of the spectral bound for a time-periodic nonlocal dispersal operator, and then obtain asymptotic behavior of the basic reproduction ratio of the model as the dispersal rates go to zero and infinity, respectively. Next, we establish the existence, uniqueness and stability of steady states of the model in terms of the basic reproduction ratio. Finally, we discuss the impacts of small and large diffusion rates of the susceptible and infectious populations on the persistence and extinction of the disease.
報告時間:2024年7月11日(周四)下午15:30-17:00,
報告地點:線下,H203
報告人簡介:
王其如,中山大學數(shù)學學院教授、博士研究生導師,中國工業(yè)與應用數(shù)學學會理事、數(shù)學與國防創(chuàng)新委員會委員、數(shù)學模型專業(yè)委員會委員,廣東省和廣州工業(yè)與應用數(shù)學學會理事長、黨支部書記。王教授從事微分方程與動力系統(tǒng)、數(shù)學建模等方面的研究及應用,主持完成國家自然科學基金面上項目4項、在研1項,在國內(nèi)外學術期刊J. Differential Equations、Adv. Nonlinear Anal.、J. Nonlinear Sci.、Nonlinear Anal. Real World Appl.、Discrete Contin. Dyn. Syst.、Fract. Calc. Appl. Anal.、中國科學數(shù)學(中、英文版)等發(fā)表相關學術論文140 余篇。是德國《數(shù)學文摘》和美國《數(shù)學評論》的評論員等。